
Unit -2: Types, Operators and Expressions

1 | P a g e

Boolean

Data Type

Compound

Data Types

Core Data

Types

Data Types

Unit -2

Topics to be Covered

Types, Operators and Expressions: Types - Integers, Strings, Booleans; Operators-

Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical

Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and

order of evaluations Control Flow- if, if-elif-else, for, while, break, continue, pass

Python Data Types

Python Data Types are classified as “Core Data Types” , “Compound Data Types” and

“Boolean Data Type”. Under the Core data Types we have Numbers and Strings. Under the

Compound Data Types, we have Lists, Tuples, Dictionary, and set etc. The Numbers and Strings

represent the Numeric and Textual values, respectively. Under the Boolean Data, a variable can

contain any one of the two values: True or False.

Core Data Types

Fig 1: Data Types in Python

Numbers: Integers, floating point numbers and complex numbers are fall under the Number category.

These are defined as “int”, “float”, and “complex” class in Python. We can use the type function to know

type or class of a variable. Integers can be of any length, it is only limited by the memory variable. A

floating point number is accurate up to 15 decimal points.

For example, 1 is an Integer. 1.0 is floating point number. The complex numbers are written in form,

x+yj, where x is the Real part and y is the imaginary part.

Procedure to know the Type of the Data:

>>> x=12

>>> print("class of x is:",type(x))

('class of x is:', <type 'int'>)

>>> y=13.4

Unit -2: Types, Operators and Expressions

2 | P a g e

Strings: String is a sequence of characters. We can use single quotes or double quotes to represent the
strings. Multiline strings are denoted with Triple Quotes, ‘ ‘ ‘ or “ “ “.

Example Program

Output:

Hello Python Programmer
It is easy to write and read.It is easy to write and read.It is easy to write and read.It is easy to write and
read.

.
We can get the character at the specified position by its index. We can also get the substring from the
index by specifying the range of the substring. The index always starts from zero. See the following
example:

s="Hello Python Programmer"
print(s)
print(s[2]) # obtaining the character at position 2
print(s[3:7]) # retrieving substring using the from index 3 to 7

Output:

Hello Python Programmer
l
lo P

Boolean Data Type

A Boolean variable can reference one of two values: True or False. Boolean variables are

commonly used as flags, which indicate whether specific conditions exist.

>>> print("class of y is:",type(y))

('class of y is:', <type 'float'>)

>>> a=12+13j

>>> print("class of a is:",type(a))

('class of a is:', <type 'complex'>)

>>> z=True

s="Hello Python Programmer"

s1='''It is easy to write and read.It is easy to write and read.It is easy to write and read.It is easy to

write and read.'''

print(s)

print(s1)

Unit -2: Types, Operators and Expressions

3 | P a g e

Example Program: booltest.py

b=False
print "The value of b is:",b

print "class of b is:",type(b)

b=True

print "The value of b is:",b

print "class of b is:",type(b)

Output:

Compound Data Types

List, Tuple, Sets and Dictionaries are fall under the Compound Data Types. We will discuss

about these in the 3rd unit.

List: Is the Order collection of different types of items. All the items need not be of same type.

These are mutable, that means the list can be modified using the index of the item or using the

predefined methods such as “append()”, “sort()”, “pop()”, and “reverse()”. The list is created

with square brackets [].

Example:

After change

M=[“apple”, “Orange”,45.7,”Sweet”]

Tuples: It is roughly like a list, but is immutable, that means, the tuple cannot be modified once

it is created. We can get the index of an item. We can also get the frequency of the item using the

function like “index() “and “count()”.. This is created with parentheses ().

Example:

Type Conversion

M=[“apple”, 2,45.7,”Sweet”]

M[1]=”Orange” # it is a valid operation, we can change an item to another item

The value of b is: False

class of b is: <type 'bool'>

The value of b is: True

class of b is: <type 'bool'>

T=(1,2,3,4)

T[1]=”Apple” # not possible to change, it is an error

Unit -2: Types, Operators and Expressions

4 | P a g e

Each Python type comes with a built-in function that attempts to convert values of another type

into that type. The int(ARGUMENT) function, for example, takes any value and converts it to

an integer, if possible, or complains otherwise:

Example:

The following statement converts float value into integer.

int(12.3) ->12
The following statement converts integer value float integer.

float(12) -> 12.0

It may seem odd that Python distinguishes the integer value 1 from the floating-point value 1.0.

They may represent the same number, but they belong to different types. The reason is that they

are represented differently inside the computer.

Operators

Expression: An Expression is a combination of operators and operands that computes a value

when executed by the Python interpreter. In python, an expression is formed using the usual

mathematical operators and operands (sometimes can be values also).

For example, to add two numbers that are stored in operands x and y is written as, x+y. Where +

is the Arithmetic addition operator. The operator in Python are classified as follow:

1. Arithmetic Operators

2. Comparison (Relational) Operators

3. Bitwise Operators

4. Logical Operator

5. Assignment Operators

6. Membership Operators

7. Identity Operators

1. Arithmetic Operators

These operators are used to perform operations such as addition, subtraction, multiplication,

division and modulo division. For example, x=7, and y=3.

Operator Meaning Example

+ Addition-Used to perform arithmetic addition x+y, results in 10

- Subtraction-Used to perform arithmetic subtraction x-y, results in 4

* Multiplication-Used to perform multiplication x*y, results in 21

/ Division-Used to perform division x/y , results in 2

% Modulus-Used to perform modulus operation (remainder) x%y, results in 1

// Used to perform floor division (floor value) x//y, results in 2

** Exponent- Used to raise operand on left to the power of
operand on right

x**y, 343

Example program:

Unit -2: Types, Operators and Expressions

5 | P a g e

Op.py

Source Code Output

x=input("Enter value of x :")

y=input("Enter value of y :")

print " --------------------- "

print " Addition is:",(x+y)

print " Subtraction is:",(x-y)

print " Multiplication is:",(x*y)

print " Division is:",(x/y)

print " Modulus is:",(x%y)

print " Floor Division is:",(x//y)

print " Exponent is:",(x**y)
print " --------------------- "

Enter value of x :7

Enter value of y :3

Addition is: 10

Subtraction is: 4

Multiplication is: 21

Division is: 2

Modulus is: 1

Floor Division is: 2

Exponent is: 343

2. Comparison (Relational) Operators

These operators are used to compare value. The operators can either return True or False

according to the condition. The table with following values for x=7 and y=3

Operator Meaning Example

> Greater Than-Returns True if the left operand is greater than
the right, otherwise returns False

x>y, results in True

< Less Than-Returns True if the left operand is less than the
right, otherwise returns False

X<y, results in False

= = Equal to-Returns True if both are equal, otherwise False x==y, returns False

!= Not Equal to- Returns True if both are not equal, otherwise
False

x!=y, return True

>= Greater than or Equal- Returns True if the left operand is
greater than or equal to the right, otherwise returns False

x>y, returns True

<= Less than or Equal- Returns True if the left operand is Less
than or equal to the right, otherwise returns False

X<y, returns False

Example Program: relp.py

Source Code Output

x=input("Enter value of x ")

y=input("Enter value of y ")

print " --------------------- "

print " Greater than is:",(x>y)

print " Less Than is:",(x<y)

print " Equality is :",(x==y)

print " Not equal is:",(x!=y)

print " Greater than or equal is:",(x>=y)

print " Less than or equal is:",(x<=y)

print " --------------------- "

Enter value of x 7

Enter value of y 3

Greater than is: True

Less Than is: False

Equality is : False

Not equal is: True

Greater than or equal is: True

Less than or equal is: False

Unit -2: Types, Operators and Expressions

6 | P a g e

3. Bitwise Operators

Bitwise operators act on operands as if they were string of binary digits. The operators operate

bit by bit. For example, x=2 (binary value is 10) and y=7 (Binary value is 111). The binary

equivalent of the decimal values of x and y will be 10 and 111 respectively.

Operator Meaning Example

& Bitwise AND X&y=0

x=010

y=111

x&y= 010 (2)

| Bitwise OR x|y=7

x=010

y=111

x|y=111 (7)

~ Bitwise Not ~x is ,-3

^ Exclusive OR (XOR) X^y=5

x=010

y=111

x|y=101 (5)

>> Shift Right (operand >>no. of bit positions) x>>1, results 1

<< Shift Left (operand <<no. of bit positions) X<<2, 1000 (8)

Example Program: bitop.py

Source Code Out put

x=input("Enter value of x :")

y=input("Enter value of y :")

print "-----Bitwise Operations ------- "

print " AND (&) is:",(x&y)
print " OR (|) is:",(x|y)

print " XOR (^) is:",(x^y)

print " Not (~) is:",(~x)

print " Shift Right(>>) is:",(x>>1)

print " Shift Left (<<)is:",(x<<2)

print " --------------------- "

Enter value of x :2

Enter value of y :7

-----Bitwise Operations--------
AND (&) is: 2

OR (|) is: 7

XOR (^) is: 5

Not (~) is: -3

Shift Right(>>) is: 1

Shift Left (<<)is: 8

4. Logical Operator:

There are three logical operators: and, or, and not. The semantics (meaning) of these

operators is similar to their meaning in English. For example, x > 0 and x < 10 is true only if x is

greater than 0 and less than 10. n % 2 == 0 or n % 3 == 0 is true if either (or both) of the

conditions is true, that is, if the number is divisible by 2 or 3. Finally, the not operator negates a

boolean expression, so not(x > y) is true if (x > y) is false, that is, if x is less than or equal to y.

Unit -2: Types, Operators and Expressions

7 | P a g e

Operator Meaning Example

and True if both the operands are
True

x and y

or True, if either of the operands
is True

x or y

not True if operand false not x

Example Program: logop.py

Source Code Out Put

x=True

y=False

print " x and y is :",x and y

print " x or y is :",x or y

print " not x is:",not x

x and y is : False

x or y is : True

not x is: False

5. Assignment Operator

Assignment operator is used to assign values to the variable. For example, x=5 is simple

assignment operator, that assigns value 5 to the to the variable x. There are various compound

operators in python like a+=5, which adds value 5 to the variable and later assigns it to variable

a. This expressions is equivalent to a=a+5. The same assignment operator can be applied to all

expressions that contain arithmetic operators such as, *=, /=, -=, **=,%= etc.

6. Membership Operators

These operators are used to test whether a value or operand is there in the sequence such as list,

string, set, or dictionary. There are two membership operators in python: in and not in. In the

dictionary we can use to find the presence of the key, not the value.

Operator Meaning Example

In True if value or operand is
present in the sequence

5 in x

not in True if value or operand is not
present in the sequence

5 not in x

Example Program:

Source Code Output

#membership operator: in and not in

x="Hello Python" # string

('H in x', True)
('hello in x', False)

x=4

x+=5

>>> x

print “The value of x is:”, x

>>> The value of x 9

Unit -2: Types, Operators and Expressions

8 | P a g e

y={1:'a',2:'n',3:'t'} #dictionary

print ("H in x",'H' in x)

print ("hello in x","hello" in x)

print ("1 in y",1 in y) # 1 key key in dictionary

print ("a in y",'a' in y) #a is value in dictionary

('1 in y', True)
('a in y', False)

7. Identity Operators

These are used to check if two values (variable) are located on the same part of the memory. If

the x is a variable contain some value, it is assigned to variable y. Now both variables are

pointing (referring) to the same location on the memory as shown in the example program.

Operator Meaning Example

Is True if the operands are

identical (refer to the same

memory)

X=5

Y=X
X is Y , returns True

is not True if the operands are not

identical (refer to the same
memory)

X=5 #int

Y=5.0 # float
X is not Y, returns True

Example Program:

Source Code Output

#indetity operator program ('x is y', False)

x=[1,2,3] #list ('x is z', True)

y=[1,2,3] #list

z=x

print ("x is y", x is y) # x and y are different

objects

print ("x is z", x is z) # x and z are refering to

same object

Expressions and Order of Evaluations

When more than one operator appears in an expression, the order of evaluation depends

on the rules of precedence. Python follows the same precedence rules for its mathematical

operators that mathematics does. The acronym PEMDAS is a useful way to remember the order

of operations:

 Parentheses have the highest precedence and can be used to force an expression to

evaluate in the order you want. Since expressions in parentheses are evaluated first, 2*(3-

1) is 4, and (1+1)**(5-2) is 8. You can also use parentheses to make an expression easier

to read, as in (minute*100)/60, even though it doesn’t change the result.

 Exponentiation has the next highest precedence, so 2 **1+1 is 3 and not 4, and 3*1** 3

is 3 and not 27.

Unit -2: Types, Operators and Expressions

9 | P a g e

 Multiplication and Division have the same precedence, which is higher than Addition and

Subtraction, which also have the same precedence. So 2 *3-1 yields 5 rather than 4, and

2/3-1 is -1, not 1 (re- member that in integer division, 2/3=0).

 Operators with the same precedence are evaluated from left to right. If the minute=59,

then in the expression minute*100/60, the multiplication happens first, yielding 5900/60,

which in turn yields 98. If the operations had been evaluated from right to left, the result

would have been 59*1 which is wrong. If in doubt, use parentheses.

Example Program:

Source Code Output

#order of evaluations

x=2

y=3

z=6

print "The value of expression x**y+z is",

x**y+z

print "The value of expression (x*y)**2+z-x

is", (x*y)**2+z-x

The value of expression x**y+z is 14

The value of expression (x*y)**2+z-x is 40

Note: expression in () is executed first, then

exponent is calculated, later addition and

subtraction at the end

Precedence of the Operators (Precedence increase from Top to Bottom)

Control Flow: In all most all programming languages the control flow statements are classified

as Selection Statements, Loop Statements, or Iterative Statement, and Jump Statements. Under

Unit -2: Types, Operators and Expressions

10 | P a g e

the Selection statements in Python we have if, elif and else statement. Under the loop statements

we have for and while statements. Under the Jump statements we have break, continue and

pass statements.

If statement - The if statement is used for conditional execution. An if statement is followed

by a Boolean expression, which is evaluated to either True or False. If Boolean expression is

evaluated to True, the block which contains one or more statements will be executed. Otherwise,

the block followed by the “else” statement is executed. The general form of if statement will be

as follow in Python:

Example program: Write a Program whether a given Number if even or Odd.

Evenodd.py Output

#read the number from keyboard

n=input("enter any number :")
if(n%2==0): #test the number

print ("It is Even")

else:

print ("It is Odd")

enter any number :13

It is Odd

>>>

===========================

enter any number :12

It is Even

>>>

if –elif-else statements

General form of if-elif-else will be as follow:

if boolena_expression:

statement(s) # block of statements inside if

else:

statement(s) # block of statements inside else

This combination of statements is used, whenever; one among multiple alternatives needs to be

selected. It selects exactly one block of statements if and only if, one of the Boolean expressions

is evaluated to True, otherwise block inside the “else” statement will be executed, if present.

if (boolean_expression):

Block of statements

elif(boolean_expression):

Block of statements

elif(boolean_expression):

else:

https://docs.python.org/3/reference/compound_stmts.html#if

Unit -2: Types, Operators and Expressions

11 | P a g e

Write a Python program to check the whether a given character is Vowel or Consonant.

Vowel.py output

#vowel or Consonant

ch='i'

if ch=='a' or ch=='A':

print "Vowel"

elif ch=='e' or ch=='E':

print "Vowel"

elif ch=='i' or ch=='I':

print "Vowel"

elif ch=='o' or ch=='O':

print "Vowel"

elif ch=='u' or ch=='U':

print "Vowel"

else:

print "Consonant"

Vowel

Write a Python program to find the grade of a Student for the marks secured in 5 subjects.

grade.py Output

#read marks for 5 subjects Enter marks for s1:78

total=0 Enter marks for s2:90

s1=input("Enter marks for s1:") Enter marks for s3:96

s2=input("Enter marks for s2:") Enter marks for s4:98

s3=input("Enter marks for s3:") Enter marks for s5:93

s4=input("Enter marks for s4:") The Total is : 455

s5=input("Enter marks for s5:") Grade is A+

#find the total

total=(s1+s2+s3+s4+s5)

print "The Total is :",total

#find the avg

avg=total/5

if avg>90 and avg<100:

print "Grade is A+"

elif avg>80 and avg <90:

print "Grade is A"

elif avg>70 and avg <80:

print "Grade is B+"

elif avg>60 and avg <70:

print "Grade is B"

elif avg>50 and avg <60:

Block of statement

Unit -2: Types, Operators and Expressions

12 | P a g e

print "Grade is C"

else:

print "Grade is D"

Loop Statements

The loops are used to execute some finite number of statements in block repeatedly until some

condition is satisfied. There are two loop statements in Python, for and while.

for statement

list. The general form of “for” loop in Python will be as follow:

of data items that are enclosed in a set of square brackets is called a list. The list is created with
help of [] square brackets. The list also can be created with help of tuple. We can also use

range() function to create the list. The general form of the range() function will be as follow:

 range(number) –ex: range(10) –It takes all the values from 0 to 9

 range(start,stop, interval_size) –ex: range(2,10,2)-It lists all the numbers such

as 2,4,6,8.

 Range(start,stop)-ex: range(1,6), lists all the numbers from 1to 5, but not 6.

Here, by default the interval size is 1.

fortest.py Output

#sum of all items in the list

s=0
for x in [1,2,3,4,5]: # list

s=s+x

print "The sum of all items in the list is:",s

The sum of all items in the list is: 15

Write a Python Program to find the square of all the items in the list using for loop.

For loops iterate over a given sequence or list. It is helpful in running a loop on each item in the

for variable in [value1, value2, etc.]: # list

statement1

statement2

…………

Statement N

Here variable is the name of the variable. And in is the keyword. Inside the square

brackets a sequence of values are separated by comma. In Python, a comma-separated sequence

Write a Python Program to find the sum of all the items in the list using for loop.

squaretest.py Output

Unit -2: Types, Operators and Expressions

13 | P a g e

while statement

While loops repeat as long as a certain boolean condition is met. The block of statements is

repeatedly executed as long as the condition is evaluated to True. The general form of while will

be as follow:

Write a Python Program to the sum of first N natural numbers using the while loop.

whiletest.py Output

#sum of first natural numbers using while

s=0
n=input("Enter any number :")

while(n>0):

s=s+n

n=n-1

print "The sum is :",s

Enter any number :10

The sum is : 55

ELSE for a loop
 Loop statements may have an else clause

 It is executed when the loop terminates through exhaustion of the list (with for loop)

 It is executed when the condition becomes false (with while loop) ,But not when the loop

is terminated by a break statement

 Example: printing all primes numbers up to 1000

#square of all items in the list
print "The Number Square"

print " ------------------"

for x inrange(1,6): # list

print "The square of ",x,"is ",x**2

print " -----------------"

while condition:
statement1

statement2

………….

ststementN

for n in range(2,1000):

for x in range(2, n):

if (n%x)==0:

break

else:

print(n)

The Number Square

The square of 1 is 1
The square of 2 is 4
The square of 3 is 9
The square of 4 is 16
The square of 5 is 25

Unit -2: Types, Operators and Expressions

14 | P a g e

Jump Statements: we have three jump statements: break, continue and

pass.

break statement

It terminates the current loop and resumes execution at the next statement, just like the

traditional break statement in C.

The most common use for break is when some external condition is triggered requiring a hasty

exit from a loop. The break statement can be used in both while and for loops.

If you are using nested loops, the break statement stops the execution of the innermost loop and

start executing the next line of code after the block.

Syntax

The syntax for a break statement in Python is as follows −

Example Program:

#first Example Output

for letter in ‘Python’: # First Example

if letter == ‘h’:

break

print ‘Current Letter :’, letter

Current
Current
Current

Letter
Letter
Letter

:
:
:

P
y
t

#second Example

var = 10 # Second Example

while var > 0:

print 'Current variable value :', var

var = var -1

if var == 5:

break

print "Good bye!"

Current variable value : 10
Current variable value : 9
Current variable value : 8
Current variable value : 7
Current variable value : 6
Good bye!

break

Unit -2: Types, Operators and Expressions

15 | P a g e

continue

Continue Statement

It returns the control to the beginning of the while loop.. The continue statement rejects all the

remaining statements in the current iteration of the loop and moves the control back to the top

of the loop.

The continue statement can be used in both while and for loops.

Syntax

#first example Output

for letter in 'Python': # First
Example

if letter == 'h':

continue

print 'Current Letter :', letter

Current Letter :
Current Letter :
Current Letter :
Current Letter :
Current Letter :

P
y
t
o
n

#second Example Output

var = 10 # Second
Example

while var > 0:

var = var -1

if var == 5:

continue

print 'Current variable value :', var

print "Good bye!"

Current variable
Current variable
Current variable
Current variable
Current variable
Current variable
Current variable
Current variable
Current variable
Good bye!

value
value
value
value
value
value
value
value
value

:
:
:
:
:
:
:
:
:

9
8
7
6
4
3
2
1
0

Pass statement

 The pass statement does nothing

 It can be used when a statement is required syntactically but the program requires no

action

 Example: creating an infinite loop that does nothing

while True:

pass

Unit -2: Types, Operators and Expressions

16 | P a g e

********-------End--------of------2nd ------Unit---- *******

	Unit -2
	Topics to be Covered
	Core Data Types
	Boolean Data Type
	Output:
	After change
	Type Conversion
	float(12) -> 12.0
	Operators
	1. Arithmetic Operators
	Example program:
	Example Program: relp.py
	Example Program: bitop.py
	Example Program: logop.py
	6. Membership Operators
	Example Program:
	Example Program: (1)
	Example program: Write a Program whether a given Number if even or Odd.
	Write a Python program to check the whether a given character is Vowel or Consonant.

	for statement
	Write a Python Program to find the square of all the items in the list using for loop.
	Write a Python Program to the sum of first N natural numbers using the while loop.
	break statement
	Continue Statement

	Pass statement
	while True:

